三分之一是有理数。
无理数是无限不循环小数和开方开不尽的数。如圆周率、根号2等。而三分之一是无限循环(3循环)小数,且能以分式形式能表达,所以不是无理数。有理数为整数(正整数、0、负整数)和分数的统称,所以三分之一是有理数。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。整数和分数统称为有理数。与有理数对应的是无理数,如根号2无法用整数比表示。有理数的小数部分有限或为无限循环。不是有理数的实数遂称为无理数,其小数部分是无限不循环的数。